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Abstract

Component interoperability has become an important concern as industry and government
migrate legacy systems, integrate COTS products, and assemble modules from disparate sources
into a single application. While middleware is available for this purpose, it often does not form a
complete bridge between components and may be inflexible for the eventual evolution of the
application. What is needed is explicit design information that will forecast a more accurate,
evolvable, and less costly integration solution implementation. Emerging research has shuown
that interoperability problems can be traced to diftferences in the software architectures of the
components and integrated application. Furthermore, the solutions generated for these problems
are guided by an implicit understanding ot software architecture. Current technology does not
fully identify what must be made explicit about software architecture to aid in the comparison ot
architectures and the expectations of participating entities within an integrated application. Thus,
there can be no relief in the expense or the duration of implementing long-term reliance on
middleware.

The overall goal of our research is to define and build this technology. Toward this end there are
many individual pieces that need to be distinguished and analyzed. We focus on three areas of
technical progress: analysis process, modeling, and case studies. Our preliminary Integration
Component Architecture Process (ICAP) has been refined. It now includes those architecture
characteristics that we have defined as standard to architecture. Additionally, we have defined a
set of common contflicts to begin the development of a theory of interoperability. We have
preliminary connections from characteristic comparisons to predefined contlicts. We have.
maintained our stance on using the combination of UML [RAT99] and Object-Z [DKRS91] for
semi-formal and formal modeling. We believe that the use of these languages will aid in the
future research ot connecting contlicts to integration elements. We continue to develop in-house
case studies and are currently embarking on industry initiatives to further the prospect of
technology transter.




Objectives

One of the major industrial and governmental efforts in software development is to build or
migrate applications using heterogeneous component systems. These component systems
include legacy software, commercial-off-the-shelt (COTS) products, and software under design.
This style of software development enjoys the benefits of reusability, adaptability, and
evolvability, as applied to the individual components and the integrated system application.
Therefore, it is important to facilitate the integration of the components such that the final
application satisfies its requirements.

A major drawback of this software development approach is that integrating heterogeneous
components can manitest dificult interoperability problems among component systems. These
problems inhibit integration among components due to mismatches between data and control
characteristics of their exposed interfaces. Integration solutions can be complex, hard to derive,
and time-consuming to develop. Traceability trom problem to solution is important because
system upgrades may produce new interoperability problems, causing earlier solutions to become
obsolete. This results in modifications to the original integration strategy. Thus, understanding
the reasons for interoperability problems and being able to formulate methods of design for
resolution is very valuable. ’ ‘

Commercial middleware products exist, but are applied after design decisions have been made.

This makes it difficult to choose the right product, and often the final choice, when implemented,

does not provide a complete, flexible and evolvable solution. Their usage can eliminate needed
traceability back to the interoperability problems. In addition, with this implementation-based

approach, there is no feasible way to determine if the middleware satisfies the stated, possibly

critical, requirements of the integrated application. Therefore, while commercial products may

result in a low cost. short-term solution, any subsequent changes to the integrated application can

greatly increase the cost for its maintenance and upgrade.

The goal of this research is to facilitate integration by making architecture interoperability
analysis part ot application design. This is in contrast to current methodologies that have the
developers choose, somewhat blindly, the application configuration and middleware and then
architect around those choices. With our approach, integration problems are predicted and
solutions are planned and evaluated prior to implementation. Since there is an implied
understanding on the part of developers concerning the basic configuration and cooperation of
the components in the application, interoperability analysis at the software architecture level is
teasible.

The first year of funding was devoted to determining what was needed for analysis at the
architecture level of abstraction. We developed a shallow understanding of the analysis process,
as well as modeling approaches for architecture descriptions and integration elements. The
objectives of the research reported for the second year of funding focused on deepening that
understanding and bridging the gaps between the individual entities of architecture
characteristics, contlicts, integration solutions, and middleware. The third year of funding was
directed to more formal and theoretical aspects of process specification and interoperability




concerns. Through this etfort, we have completed the initial assessment and development of an
interoperability problem detection methodology within a unified framework as proposed.

Status of the Research Effort

1. Introduction

Interoperability problems are multi-dimensional and often require complex, compositional
solutions. Although thiere are several strategies that currently exist for the integration ot systems,
many suffer from informality and are tightly coupled to particular domains and products. More
importantly, interoperability problem prediction and integration solution design are only recently
being addressed. In sharp contrast, the most common practice is to deploy a delayed.
implementation-based approach to resolve interoperability problems, especially in cases where
middleware products are used. The focus of our research is the early prediction and assessment
of interoperability conflicts among interacting components and the generation of a verifiable
integration infrastructure for resolving these conflicts.

Our research focuses on minimizing the detail needed for interoperability analysis when
formulating consistent models across the various entities involved in composability assessment,
e.g., software systems, application requirements, interoperability contlicts, and middleware. We
use principles of software architecture as a basis for normalization. Specifically, we have
identified architecture properties of component systems and the application requirements using
empirical study to determine their influence on interoperability conflicts. In addition, we have -
discovered and modeled integration elements, ie., low-level integration functions with various
compositions that underlie middleware.

For the purposes ot this research, we use the following terminology (see Figure 1). A module is a

computational component, internal to a system, which interacts via connectors. A component is

an independent system:. The application is the integrated system of components.
APPLICATION

COMPONENT 1 COMPONENT 2

Interaction

Problematic
interactions

Figure 1: Terminology Usage
2. Technical Progress

The main objectives of the research as supported by AFOSR since February 1998 in the area of
software architecture and interoperability are (1) to describe the non-functional properties of a




sottware system as being architecturally dependent, (2) to formally model the characteristics and
domain components of software architectures, (3) to capture the formal underpinnings of
interoperability through composition and integration of base architectural styles. (4) to prove
properties of applications derived using formal models of architectures. and (5) to encompass the
above formal modeling, integration, and property guarantees within a uniform formal
framework. In this section, we summarize our current research over the past year toward
achieving these objectives.

2.1 Software Architecture Characteristics for Interoperability.

Much research has been performed to describe a variety of software architecture characteristics
[ABDY6, AGY7. SC97, GAQY3, SIT97, KGY9]. In [DGPKYY], we established the validity of
these characteristics toward achieving a complete and accessible set. We provided a
comprehensive treatment of the various published characteristics (74 in all), using a combination
of abstraction levels and semantic networks to show how they can be grouped for evaluation.
The objective was to construct a representative set that includes characteristics embodying
dominant, accessible component descriptions relevant to interoperability issues. We refer to this
set as architecture interaction characteristics. These characteristics are partitioned according to
two distinct perspectives of architecture description. The tirst perspective is from the component-
level. These characteristics contribute to an understanding of the exposed interface of a
participating component to other external subsystems. From the application-level perspective,
characteristics formulate the architectural demands on configuration and coordination of the
component systems into a single integrated application to satisty requirements. In addition to the
architecture interoperability analysis, we have evaluated the architecture interaction.
characteristics with respect to COTS product evolution within an integrated application
[DPGOOB].

CHARACTERISTICS DEFINITION VALUES

Data Storage Method | The details about how data is stored within a system Repository, Data With Events,

[SIT97] Local Data, Global Source,
Hidden, and Distributed

Supported Data The method supported by a particular architectural Explicit, Implicit, Shared

Transfer style to achieve data transfer [ABD96] .

Data Topology The geometric form the data flow takes in a system Hierarchical, Star, Arbitrary,
[SCY7] Linear, and Fixed

Control Structure The structure that governs the execution in the system | Single-Thread, Multi-Thread,
[SITY7] . Decentralized

Control Topology The geometric form the control flow takes in a system | Hierarchical, Star, Arbitrary,
[SCI7] Linear, and Fixed

Identitv of Knowledge or awareness of other components in the Awure, Unaware

Components system [SIT97]

Blocking Whether or not the thread of control is suspended Blocking, Non-Blocking
[KG99]

Table 1: Component-Level Characteristics

We analyzed the characteristics by eliminating redundancies among published characteristic
definitions and partitioned them into three levels of abstraction: orientation, latitude, and
execution. Each level designates at what point in the development effort the values of its




characteristics are established. Our goal was to determine the orientation level characteristics
shown in Table 1 that represent high-level architectural requirements. Each of these
characteristics is semantically related to at least one character in either the latitude or execution
levels. From this solid foundation, we were able to strengthen our analysis efforts.

Table 2 detines our current set of application requirements at the orientation level. Some of the
application-level characteristics are referred to by the same names as the component-level
characteristics. However, they are defined by a different perspective or viewpoint. These
characteristics are synthesized from the integrated application and environment requirements to
formulate the architectural demands on configuration and cocrdination of the participating
components in the application. For each characteristic within the above set, our previous work
examined the definition through empirical studies to determine how its expectations for system
performance across components cause interoperability contlicts [DPGOOA]. This has led to our
two-part approach to architecture interaction analysis (part of the pre-integration phase of ICAP
[PKG99]) that we discuss in Section 2.4.

CHARACTERISTIC DEFINITION VALUES
Control Topology The geometric formation of the control flow Hierarchical, Linear, Star,
across the integrated application [SC97]. " | Arbitrary, Fixed
Data Topology The geometric formation of the data tlow across | Hierarchical, Lineur, Star,
the integrated application [SC97]. Arbitrary, Fixed
Control Structure The structure that governs the execution of the Single-Threaded, Multi-

independent component systems in the integrated | Threaded, Decentralized
application [SIT97].
Synchronization Whether or not the components need to Synchronous, Asynchronous
rendezvous [KG9Y, YBBY99].

Table 2: The Application-level Characteristics

2.2 An Initial Comparative Theory

We have begun preliminary research toward a theory of architecture interaction. As part of this
theory, each component will have a set of values assigned to all known characteristics (Table 1).
For each characteristic. there is at most one value, which will be assigned to it. The choice of
value refers to the most restrictive possible for assignment. Analysis is first performed on a
component-component basis by examining the following:

o Similar characteristics with like values

o Similar characteristics with mismatched values

¢ Different characteristics
By distinguishing these different assessments, we call attention to the fact that contlicts are not
solely determined by comparing similar characteristics with mismatched values
[ABD96,YBBY9].

2.2.1 Categories of Conflict

We have found that repeated interoperability conflicts appear in one of three categories: transter
of control, transfer of data, and interaction initializaiion. For each of the categories, we have




described their contlict types using the same level of abstraction as the software architecture
description [DPGKO00].

Cutegory 1: Control Transfer

Restricted points of control transfer
Unspecified control destination
Inhibited rendezvous

Sequencing multiple control transfers

RSN

Category 2: Dara Transfer

Restricted points of data transfer
Unspecitied data destination
Unspecitied data location

Possible data inconsistency
Possible invalid data

0. Sequencing multiple data transfers

= 0 00 N O Wy

11. Mismatched data transfer assumptions

Category 3: Interaction Initialization
12. Initialization of control transter
13. Initialization of data transfer
2.2.2 Notation

We define problematic architecture interactions as follows [DGPKO0O].

Definition: A problematic architecture interaction is an interoperability conflict that 18
predicted through the comparison of architecture interaction characteristics and recuires
intervention via external services tor its resolution.

The notation
x —>Tey

means "x problematically interacts with y causing conflict set T" where T is a subset of common
conflicts detined in [DGPKOO] and x and y architecture interaction characteristics. Each
problematic interaction maps to one or more of the above contlict types listed in section 2.2.1.

2.2.3 Assessment

The first step is to assess the details with respect to direct component interaction. The second

step is to overlay the application requirements on the interacting components to refine the
conflict set.




Step 1: Assessment Details

In this step, we tirst determine the values for the architecture interaction characteristics ot each
participating component. Using a bipartite graph, we perform pairwise assessment of
components for all characteristics with values. Bipartite graphs are constructed for all
component-component pairs, whether they will eventually communicate or not. The theory
discussed in the previous section is used to map interactions to common contlict to determine
which ones could be problematic. Union and additivity rules (part of the theory from [DGPKO00])
are applied to clarify the set of problematic interactions into a minimal, understandable set in
which characteristics and their contlict relationships are made apparent.

Step 2: Overlaying Application Requirements

The second step is to turther refine the contlict set from step 1. We eliminate those problematic
interactions from pairwise assessments in which there is no control and/or data exchange. Then,
we append any new contlicts caused by the influenced of the application requirements. This is
done by using the mapping supplied by the theory. However, the union and additivity rules both
need to be extended with respect to application-level characteristics to prune and relate the
conflicts from each perspective. This is part of our future etforts.

For illustration purposes, we present the two contlicts.

Fl: Restricted points of control transfer
F2: Sequencing multiple control transfers

As an example, consider the bipartite graphs showing characteristics comparisons in Figure 2, .
given components A, B, and C. The dashed lines indicate there are no problematic interactions
when directly comparing characteristics in A with characteristics in B. Assume that the
application (APP) has a requirement that the control topology of the system ot components is
arbitrary. Empirical analysis shows that

CT.Hierarchical (A)— { D)« CT.Hierarchical (B)
CT.Hierarchical (B) — {F1,F2}« CT.Arbitrary (C)
CT.Hierarchical (B) — {F1,F2} ¢« CS.Decentralized (C)
CT.Arbitrary (APP) — (Fl, F2} ¢« CT.Hierarchical (A),

CT.Hierarchical (B)

where the CT and CS refer to the control topology and control structure, respectively. These
relations indicate that both conflicts (FI and F2) result when B and C must interact. As a result
of the Union Rule for Problematic Interaction [DGPKOOQ], we can present the contlicts so that
their relationship to each other is observable. In general, the union can indicate a single solution.
Indeed, for this example, mediation between B and C can resolve both problems by determining
an appropriate sequence of multiple control transters and directing their point of entry.

The interaction assessment does not end with component-component interaction analysis. Using
the characteristics from the application perspective, we can determine the potential for
problematic interactions when components must satisfy the architecture requirements of the
integrated system. Application requirements can influence interoperability by dictating a context
in which certain configuration and coordination issues become problematic, depending on how
compatible they are with the expectations of the components [DPGOOA]. Thus, application-




component conflicts are variable, depending on the current application characteristics. In some
instances, they can atfect the resolution of a component-component contlict. Conversely,
analysis of these requirements can render certain problematic interactions as irrelevant.

As shown in Figure 2, it appears that no component-component conflicts occur between A and B.
However, when application requirements are examined, new problematic interactions with
respect to A and B are discovered. In this case, the requirements for the application's control
topology forces components which normally have a direct control exchange to communicate in a
more decoupled manner. Now, intervention is needed in the form of external integration services.
such as a mediator, to conduct the control transfer.

Component A Component B Component C
Hierarchical || | Hierarchical Arbitrary Contro!
Control Topology |~ ~I'{ Control Topology >< Topology
~ e
Single-Thread /_/_/____\_\_\ Single-Thread Decentralized
Control Structure Control Structure | | Contro! Structure

—=—=—architecture interactions
potential problematic architecture interactions

Figure 2: Architecture Interaction Types

2.3 Broadening the Characteristics to a Conspectus

Because architecture description for interoperability is a primary goal for this research, we
clearly need a way to combine a minimal set of important properties for assessment into one
place. We are experimenting with the use of an architecture interaction conspectus (AIC) that
would be attached to each entity participating in an integrated system development etfort. The
conspectus forms a major building block for interoperability analysis by highlighting basic, yet
relevant, software architecture properties, functional behaviors, and non-functional requirements.
In this section, we briefly describe the context of the AIC and the type of assessment that can be
pertormed.

2.3.1 Name and Type

Every entity that participates in the development of an integrated system has a name or identifier
that separates it trom other systems. We partition these entities into three types. The first type is
the application that is composing independent subsystems. An application’s indicators are in
“goal” form, summarizing what is desired for the application as specitied by its requirements.
Thus, its indicators can be changed from their initial values as interoperability problems are
discovered and corrected.

The second entity type is the component or participating independent subsystem. For the most
part, components are complete, executable systems. Therefore, their indicators are stable.




However, some components may be in a design stage. In this case, components can have
malleable “goal” indicators. Because applications can themselves be part of a larger complex
system, they can also be considered components. With respect to the interoperability assessment
that is performed using the AIC, we assume there is only one set of application requirements.

The third system type is middleware, i.e., those subsystems that provide integration services for
the application. The manner in which middleware interfaces with the integrated environment
(components, application requirements, anc other middleware) indicates the need to ascertain
distinct properties [MGROO].

Our investigation into the construction of the AIC focuses mainly on the application and its
components as we present in the following sections. This starting point is facilitated by the
similar properties depicting these two entities. Middleware, however, has some additional
properties that need further research to accurately represent [MGROO]. However, we believe that
it will share the same categories of properties presented next. ’

2.3.2 Style Related Characteristics

As discussed in Section 2.1, style-related characteristics have played a role in the type of
interoperability problems that can be discovered by understanding the software architecture of a
system. We union the set of characteristics in Tables 1 and 2 such that each characteristic is a
separate indicator in the AIC. The interoperability assessment is performed using the process
discussed in Section 2.3. The top portion of Figure 3 depicts the characteristics in the AIC.

2.3.3 Protocol Information

Because the style-related characteristics offer only a structural view of the component,
behavioral characteristics are also needed for a more comprehensive analysis. As part of our
effort to construct the AIC, we are working to provide meaningful indicators for protocol
information that is detined in terms of the roles that a component may play in an application, and
the protocols in which the roles participace. As a first pass, we divide protocol information into
that which is available only by considering either component information or application
information, forming two distinct indicators in the AIC (as seen in the middle portion of Figure
3). We do not detail the specific sequencing of messages, since this is beyond the scope of the
AIC.

The protocol indicators are as follows.

Component Protocol Information. This indicator specifies a list of the
probable roles played by a particular component and the names of the
protocols in which they participate. Although protocol names are present,
there is no indication of how the roles participate in the protocol.

Application Protocol Information. This indicator specities the names of all
protocols needed within an application. It also identifies the names of roles
that should participate in each protocol. However, this role information is
general and is not specific to any particular component.
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These two indicators can provide an immediate view of expected behavior. With this
information, it is possible to determine if the components that are present fulfill the behavioral
expectations of the application. These indicators can also be used to decide if the addition of a
component or use of an alternative component is feasible in terms of satistying tunctional
requirements. Moreover, the protocol information can be translated into an architecture
definition language where expansion of the application and component specification can lead to
deeper analysis. Hence, even a small amount of protocol information can be used to predict
interoperability problems. -

2.3.4 Non-Functional Property Expression

The style-related characteristics and the protocol behavior comprise very relevant information
regarding interaction expectations. However, non-functional properties can also cause
interoperability problems. Achieving non-functional requirements goals by looking only at
individual components is a necessary first step to incorporate them into design decisions.
Unfortunately, it is not well suited for analysis of heterogeneous component-based software
systems, where the components must be viewed as a group with respect to application
requirements. Our research examines the potential for delineating course-grained. non-functional
properties which are the most pertinent when attempting an initial assessment or choosing
components that better satisfy requirements to complement the information obtained by
analyzing the architecture characteristics and protocols. Some of the more important extra-
functional properties at the software architecture level ((BMRSS96, CNY95, SHA96]) are
depicted in the lower portion of Figure 3.

e Performance refers to issues of time usage versus space needed by a system. Hence, the
values time and space classity this property. These values can be ranked as either high
or low.

e Security entails encryption strength, correctness, policies and protocols. Some
quantifiable aspects ot security are encryption, authentication, mediation, and audit.
Due to the varying strengths, expenses and complexities of encryption available, it is
ranked high, medium, low and none. All other values can simply be ranked high, low,
none. :

e Modifiubiliry allows for evolution of data constructs, functions, and objects in a
product. Due to the either/or nature of modifiability, a ranking ot yes or no is assigned.

e Reliability delineates the soundness ot communications, and the stability of data n an
implementation. Assumptions about communications can be made according to the
strategies of their transmissions. Thus, it is quantified by the presence of a direct or
indirect scheme. Furthermore, data can be ranked as either volatile or persistent to denote
its soundness in the application.

There are many other quantifiable aspects of each attribute. For example, access control

mechanisms of the application could also be assessed with regard to security. Yet, experience
allows the assumption that most software has some type of access control. Encryption, however,
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is not typically present and, therefore, should be examined. Consequently the values outlined in
each category are necessary tor a fundamental analysis.

It is important to note that the rankings ot each value can be termed “fuzzy.” For instance, should
the time performance (with ranks low and high) of an application be medium to high, a high
ranking will be chosen. Our assessment method specifies that if a weaker rank for a non-
functional indicator is present in a collection of components, the rank for the application as a
whole must abide by each lowest ranked property value, again loosely emulaung the lattice
structure inherent in the military security policy described in [PFL97]. For instance, should one
component have non-modifiable functions, the system’s functions as a whole would be
considered non-modifiable.

2.4 Using an Architecture Interaction Conspectus

The characteristic indicators in the AIC are basic, yet powerful enough for values to be directly
assigned and assessed for each component that participates in the integration, as well as the
resulting application. If a value cannot be assigned, the indicator is simply not used in the
assessment. There are two ways to address the limited number of conflicts that can be directly
detected during analysis of partial specifications. First, because generic solutions will be
designed to resolve the known conflicts, it is likely that they will also cover those that will not be
discovered until the application design matures. Second. as the theory is expanded, values, as
well as contlicts, may be derived from partial specifications.

Once established, it is a natural fit to express the indicators of a component’s AIC within the
eXtensible Markup Language (XML). This formulation is an XML architecture interaction
conspectus (XMLAIC). Figure 3 shows the syntax of a portion of the conspectus as an XML
Document Type Definition. In Figure 4, the XML documents depict sample XMLAICs
according to the example presented in section 2.2.2 (see Figure 2).

The XMLAIC ofters options for the pre- and post-purchase assessment of components. It also
supports a mobile and evolvable means to perform interoperability analysis. The XMLAIC in
the form of a XML document can be oftered by a vendor on their web site for potential
customers to assess the applicability of their product in any integration. Through a thin client.
the vendor-providled XMLAIC can be used as input to determine potential problematic
interactions at the level of sottware architecture. Because the XMLAIC is posted and maintained
by the vendor, versioning of a product will be reflected so that customers can judge the impact
those changes may have on existing integrated application. Also, the XMLAIC can be archived
by the customer through its packaging with the currently used product. In this way, integration
efforts can be compared, and the negative impacts of product evolution on an integrated
application can be discovered prior to upgrade [DPG0Oc].
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<i-- Element declarations -->
<IELEMENT Conspectus (CharacterAnalysis?)>
<!ATTLIST Conspectus
name CDATA #REQUIRED
type (application | component | middleware) #REQUIRED>

<l-- Characteristic Section -->
<IELEMENT CharacterAnalysis (ControlTopology?, ControlStructure?)>
<IELEMENT ControlTopology EMPTY>
<IATTLIST ControlTopology

value (hierarchical | star | arbitrary | linear | fixed) #REQUIRED>
<IELEMENT ControlStructure EMPTY>
<IATTLIST ControlStructure

value (single-thread | multi-thread | decentralized) #REQUIRED>

Figure 3: A Portion of the XMLAIC Definition

<Conspectus name="A" type="component"> <Conspectus name="B" type="component">
<CharacterAnalysis> <CharacterAnalysis> )
<ControlTopology value="hierarchical"/> <ControlTopology value="hierarchical"/>
<ControlStructure value="single-thread"/> <ControlStructure value="single-thread"/>
</CharacterAnalysis> </CharacterAnalysis>
</Conspectus> </Conspectus>
<Conspectus name="C" type="component”"> <Conspectus name="APP" type="application">
<CharacterAnalysis> <CharacterAnalysis>
<ControlTopology value="arbitrary"/> <ControlTopology value="arbitrary"/>
<ControlStructure value="decentralized"/> </CharacterAnalysis>
</CharacterAnalysis> </Conspectus>
</Conspectus>

Figure 4: Example XMLAICs

2.5 Interoperability and the Integration Elements

Though middleware trameworks are a popular solution to interoperability problems, they are
often implemented in an ad hoc fashion. With this type of development, it is difficult, if not
impossible, to show that the chosen middleware implementation satisfies integration
requirements. As a result, our research continues to focus on realizing a formal, yet useable
foundation to generate integration requirements and to validate an integration solution.

In earlier research, we defined an integration architecture to be the software architecture
description of a solution to interoperability problems between at least two interacting component
systems, and established that an integration architecture underlies each common middleware
framework [KES99]. As a result, we describe integration architectures as compositions of
integration elements. Integration elements are defined as one of the three high-level architecture
connector patterns: translator, controller, and extender [KES99]. A translator converts data and
tunctions between component system formats and performs semantic conversions. A controller
coordinates and mediates the movement of information between component systems using
predefined decision-making processes. An extender adds new features and functionality to one or
more component systems to adapt behavior for integration. Previously, we employed a taxonomy
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[KGY8, KES99] to demonstrate the relationship of the integration elements to design patterns
[GHIV95] that resolve interoperability contlicts and middleware frameworks.

Currently, our approach to composing integration elements focuses on studying a set of
published middleware frameworks and their solutions to our set of common interoperability
problems. However, developers from industry report that a single middleware product is not
necessarily the answer to a heterogeneous contlict set, meaning that there are cases when pieces
of different products are used as an integration solution. Our response to this observation is to
separate the concerns of determining the integration solution requirements from determining
which middleware framework may embody the solution. In this respect, we plan to focus on
building more generic integration architectures and showing how they satisty those requirements
without slanting the architecture toward a known tramework. The approach would allow
developers to select functionality present in one tramework and combine it with functionality
from other frameworks, possibly resulting in customized, solutions without the overhead of an
expert consultant. Using the taxonomy mentioned earlier, it is also possible to determine if a
refinement of a tramework produces a desirable solution. Furthermore. as integration etforts
mature, discovery ot new trameworks could be facilitated by the use of a generic integration
architecture as part ot the design etfort.

Consider as an example, the generic shared repository integration architecture in Figure 4.
Assume that multiple interacting components contlict with respect to data exchange because they
have ditferent data representations and they use distinct repositories to obtain data (which
becomes redundant across the entire application). A potential integration solution would include
a shared repository. Uniform modeling of the shared repository provides an understanding of the -
underlying integration functions and their composition to form a complete solution. Furthermore,
it provides a basis from which to construct a formal model.

Translators address the different data formats of the components. We separate what would likely
be implemented as a bi-directional translator to and from each component into two uni-
directional translitors that embody a single mathematical function for modeling ease. Thus,
every componert is associated with an INTranslator and an OUTranslator. The Sequencer (a
variant of the controller integration element) receives input from multiple translators to
determine the request sequence passed to the database. The database is an instance of an extender
that represents the merging of the component stores. A Determiner (a variant of the controller
integration element) passes the results of the database by deciding among the OUTranslators
which component receives which result.
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Figure 4: Generic Shared Repository Integration Architecture

To refine the generic architecture, suppose that Oracle is used to implement the database. What
types of middleware frameworks possess the necessary control and translation function to work
with the database implementation? It is possible to compare various frameworks to discover
which best represents and can implement this functionality, or we can use the atorementioned
taxonomy to tind a pattern-based solution. For instance, the Mediator [GHIV9S5] design pattern
is a refinement ot the composition of the translators and controllers in Figure 4 and can be used
to implement what we have shown above (and modeled formally in [PGKDOO]). This refinement
is shown in Figure 5 below.

Component

INTranslator OUTranslator

quencer Determiner [

DataBase

Figure 5: Specific Shared Repository Integration Architecture

The next step requires us to classity the internal parts of middleware frameworks to make a
match of one or more that implements the desired mediators, without adding extraneous
tunctionality.

3. Potential Transitions

We are still working with personnel from the Williams Companies, a Tulsa-based company, to
conduct experiments using our technology. This project we are engaged in refers to the
integration of software components from different organizations that are all part of a new online
trading system for oil and gas commodities. Another Tulsa-based company, WorldCom
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(formerly MCI WorldCom) has allowed us to experiment with an integration problem an
involving e-commerce application and its integration with proprietary WorldCom systems that
need to deliver dynamic, event-based information to a thin client. In addition, we are beginning
to interface with Chevron with the intent of analyzing their software systems and those of
Texaco for interoperability analysis in order to facilitate an information merger between the
companies. We continue to look for applications in the Air Force and other government agencies
where our technology may be applicable.
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Architectural Interaction
Cha@cteristics

RSpaRRe2008

Execution levei of abstraction

Accomplishments
* A principled and reusable methodology to qualify architectural characteristics.

We define a minimal set of characteristics relevant to component interoperability
analysis.

* The incorporation of composite application requirements in the form of characteristics.
We determine how application requirements influence component interoperability.

* The discovery of evolutionary qualities in architectural characteristics.

Rose Gamble, University of Tulsa
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’ Comparison of Characteristics for
Interoperability Assessment

SRETRRRE N TR A L
cteristics and Assigned Values

Sample Conflict Forula i
DSM.LQ!:___al(_A)’:-ffS:{t‘lv}g-— DT.}m"plicvit(G), DSM.S!ream(G)

Accomplishments

* Utilization of established characteristics in the prediction of potential interoperability
conflicts.

We use a bipartite graph of the values from both components, extending conflict
assessment beyond only similar characteristics.

* The determination of interoperability conflict patterns and their related characteristics.
®* The development of an initial theory of problematic architecture interactions.

The theory uses commutative rules and defines principles for conflict union & additiyity.
Rose Gamble, University of Tulsa

GRAPHIC REPRESENTING RECENT ACCOMPLISHMENT (2)

21




